Math 432: Set Theory and Topology

1. Let (X, d_X) and (Y, d_Y) be metric spaces. Define the following functions $X \times Y \to \mathbb{R}^+$:

$$d_{\infty}((x_1, y_1), (x_2, y_2)) := \max \{ d_X(x_1, x_2), d_Y(y_1, y_2) \}$$

$$d_1((x_1, y_1), (x_2, y_2)) := d_X(x_1, x_2) + d_Y(y_1, y_2)$$

$$d_2((x_1, y_1), (x_2, y_2)) := \sqrt{d_X(x_1, x_2)^2 + d_Y(y_1, y_2)^2}.$$

- (a) Prove d_{∞} and d_1 are metrics on $X \times Y$. REMARK: d_2 is also a metric on $X \times Y$, but the proof of the triangle inequality is a bit tedious, so it is left as an *optional* exercise.
- (b) Show that these metrics are *equivalent* in the following sense: any pair $d_i, d_j \in \{d_1, d_2, d_\infty\}$ of them admits a constant $C_{ij} > 0$ such that for all $(x, y), (x', y') \in X \times Y$,

$$\frac{1}{C_{ij}}d_i((x,y),(x',y')) \le d_j((x,y),(x',y')) \le C_{ij}d_i((x,y),(x',y')).$$

HINT: It's enough to show for the pairs d_1, d_{∞} and d_2, d_{∞} . (Why?)

- (c) Show that the topology on $X \times Y$ defined by d_{∞} (equivalently, any of these metrics, but you don't have to show this) is just the product topology. (First, unfold the definitions to see exactly what you have to show.)
- **2.** Define the function $d: (\mathbb{N}^{\mathbb{N}})^2 \to \mathbb{R}^+$ by setting it for distinct $x, y \in \mathbb{N}^{\mathbb{N}}$ to be $d(x, y) := 2^{-\Delta(x,y)}$, where $\Delta(x,y)$ is the largest $n \in \mathbb{N}$ such that $x|_n = y|_n$, and 0 for x = y.
 - (a) Show that d is an ultrametric on $\mathbb{N}^{\mathbb{N}}$, i.e., $d(x,z) \leq \max \{ d(x,y), d(y,z) \}$. HINT: Draw pictures.
 - (b) Show that every open ball is of the form $U_s := \{x \in \mathbb{N}^{\mathbb{N}} : x \supseteq s\}$ for some $s \in \mathbb{N}^{<\mathbb{N}}$.
 - (c) Show that the sets U_s as above are *clopen*, i.e., both open and closed.
- **3.** For each of the following, determine the boundary and closure of the set A in the metric space (X,d) where $X \subseteq \mathbb{R}$ given below and d is the standard metric on R. Prove your answers.

(a)
$$X := \mathbb{R}, A := \left\{ q \in \mathbb{Q} : q^2 \ge 2 \right\}.$$

- (b) $X := \mathbb{R}, A := \left\{ \frac{1}{n} : n \in \mathbb{N} \setminus \{0\} \right\}.$
- (c) $X := [-1,1) \cup \{2\}, A := (-1,1).$
- 4. Call a set Q in topological space X dense if it intersects every nonempty open set. Prove:
 - (a) A set Q in X is dense if and only if $\overline{Q} = X$.
 - (b) \mathbb{Q} is dense in \mathbb{R} (with the standard topology).
 - (c) The set Q of eventually 0 sequences in $\mathbb{N}^{\mathbb{N}}$, i.e. $Q := \{x \in \mathbb{N}^{\mathbb{N}} : \forall^{\infty} n \in \mathbb{N} \ x(n) = 0\}$, is dense in $\mathbb{N}^{\mathbb{N}}$. Here $\forall^{\infty} n$ stands for $\exists m \forall n \ge m$.

- **5.** Consider \mathbb{R} with its standard metric.
 - (a) Show that every open set is a union of open intervals with rational endpoints.
 - (b) What is the cardinality of the set \mathcal{U} of all open intervals with rational endpoints?
 - (c) How many open sets are there in \mathbb{R} ? More precisely, letting \mathcal{T} denote the topology of \mathbb{R} , i.e., the set of all open subsets of \mathbb{R} , show that $\mathcal{T} \equiv \mathbb{R}$. HINT: Define a surjection $\mathscr{P}(\mathcal{U}) \twoheadrightarrow \mathcal{T}$.